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Abstract-The objective of the present study is to employ the numerical grid generation technique for the 
solution of hydrodynamics and heat transfer in a three-droplet array. Elliptic partial differential equations 
are used to generate grids in the physical plane. The Navier-Stokes equations in vorticity-s&ream-function 
form and the energy equation have been solved numerically by the finite difference method for the Reynolds 
number range of lit200. Numerical solutions in terms of drag coefficient and Nusselt number have been 
obtained. The rest&s are compared with the results obtained in an earlier study as well as those in the 

literature. 

1. INTRODUCTION 

THE THEORY of fuel droplet vaporization and spray 
combustion has been under development for several 
decades. During recent years it has received a large 
amount of attention. Most studies on the combustion 
of liquid fuel sprays consider the vaporization of 
either single isolated droplets or overall droplet 
sprays, and relatively few works have been carried out 
on interactions between droplets. 

In dense spray situations, many droplets are 
present, and the average distance between droplets 
can be as low as a few droplet diameters. It is expected 
that the geometry and scale of the diffusion field sur- 
rounding each individual droplet will be affected by 
the droplet interaction. The Nusselt number and the 
functional form of the relationship between vapor- 
ization rates and local ambient conditions will be 
influenced by the droplet spacing. 

Some investigators have examined a few droplets 
in a well-defined geometry or a large number of drop- 
lets in a periodic configuration. These arrangements 
are sometimes referred to as droplet arrays. These 
arrays, although artificial, can be very useful in 
obtaining information on the effect of droplet spacing 
on transport rates. Some work on hydrodynamics and 
heat transfer to an array of spheres with forced con- 
vection has been performed by Tal et al. [I, 21. In 
these studies, an infinite array of spheres of radius ‘a’ 
with uniform spacing ‘2b’ (Fig. 1) is considered. Due 
to symmetry and the nearly periodic character associ- 
ated with an infinite array, no heat transfer or momen- 
tum transfer takes place at the streamwise equidistant 
plane between the spheres. By this assumption, the 
problem is reduced to a multitude of spheres in tan- 

dem in a square streamtube (Fig. 2) which is sub- 
sequently replaced with a cylindrical duct of equal 
cross-sectional area. A three-sphere array is sub- 
sequently used. 

The Navier-Stokes equations in vorticity-stream- 
function form and the energy equation are solved 
numerically by using a finite difference method with 
non-uniform cyIindrica1 mesh. The diffusion terms are 
expressed using a central difference scheme and the 
convection terms (in both the vorticity and the energy 
equation) using an upwind difference scheme. 

Recently, the present authors [3] extended Tal et 
al. ‘s formulation to the vaporizing droplet case. Nus- 
selt number correlations for both the vaporizing and 
the non-vaporizing droplet cases have been obtained. 
In order to reduce the amount of false diffusion caused 
by an upwind difference scheme, a hybrid scheme is 
used instead. It is realized that there is one drawback 
to the non-uniform cylindrical mesh geometry. It does 
not have a uniformly fine grid around the droplet 
surface region. Therefore, the accuracy of the solution 
will be affected by the relatively coarser grids in spite 
of the finer spacings in some other regions. 

In order to eliminate the disadvantage of the non- 
uniform cylindrical mesh and to improve the numeri- 
cal accuracy, a numerical grid generation technique is 
used in the present study. Numerical grid generation 
has been widely used for a numerical solution of 
partial differential equations in arbitrarily shaped 
regions, Numerous advantages accrue when this tech- 
nique is employed. For example, the body surface can 
be selected as a boundary in the computational plane 
so that the complication of boundary shape is effec- 
tively removed from the problem. It is also possible 
to distribute the transformed coordinate lines in the 
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a radius of droplet x value of x at outlet 
2b distance between the centers of two Y dimensionless radial coordinate, r/a. 

neighboring droplets 

cd total drag coefficient Greek symbols 
cdl’ friction drag coefficient 

: 
thermal diffusivity 

C 
C; 

pressure drag coefficient angle from frontal stagnation point 
specific heat at constant pressure F dynamic viscosity 

d diameter of droplet, 2a 
A heat transfer coefficient L 

kinematic viscosity 
transformed coordinates 

d Jacobian of transformation density 
k thermal conductivity $ dimensionless stream function, e,/ Via2 
itiu Nusselt number, M/k $/ stream function 
Pr Prandtl number, C&L/~ w dimensionless vorticity, w’a/ Vi 
r, 4, z cylindrical coordinates w’ vorticity. 
Re Reynolds number, Vid/V 
T dimensionless temperature, Subscripts 

(T’-T;)/(T;--T;) i mlet 
T temperature n normal to the droplet surface 
T; inlet temperature droplet surface 

TI droplet surface temperature si frontal stagnation point. 
u dimensionless velocity in z-direction 
u dimensionless velocity in r-direction Superscripts 
vi inlet velocity dimensional quantity 

X dimensionless axial coordinate, z/a - averaged qu~t~ty. 

physical plane with concentration of lines on regions 
of high gradients while maintaining the square grid in 
the computational plane. 

Some work on using numerical grid generation for 
a single droplet study has been carried out by Patnaik 
[4]. In the present study, elliptic partial differential 
equations are used to generate grids for the tbree- 
droplet array configuration. Numerical solutions of 
partial differential equations are done on the trans- 
formed coordinate system by transforming all partial 
derivatives analytically so that the transformed coor- 
dinates, rather than the physical coordinates, become 
the independent variables. The result is a set of partial 
differential equations and boundary conditions in 
which all derivatives are with respect to the trans- 
formed coordinates. These equations are then ex- 
pressed as finite difference equations on the square 
grid that is inherent in the transformed plane. The 
governing equations. expressed as difference equa- 
tions in the computa~onal plane, are solved by a 
successive line underrelaxation method. 

Aithough the present study focuses on the non- 
vaporizing droplet array case, the formulation can be 
extended to the vaporizing droplet situation. Nusseit 
numbers and drag coefficients have been obtained for 
intermediate Reynolds numbers (Rc = 10-200). The 
results are compared with the results of the previous 
work [3] as well as those in ref. [I]. 

The details of the grid generation are explained in 
Section 2. In Section 3, the mathematical formulations 

which have been derived in ref. [3] are presented for 
completeness, The finite difference forms of the 
governing equations are derived in Section 4 followed 
by results and discussion. 

2. THE GRIDS 

The problem of grid generation is that of deter- 
mining the mapping which takes the grid points from 
the physical domain to the compu~t~onal domain 
Various schemes are available to achieve such map- 
pings, including conformal mappings, algebraic 
schemes and elliptic partial differential equations. 
Thompson et al. [5] have worked extensively on using 
elliptic partial differential equations to generate grids. 
This mapping is constructed by specifying the desired 
grid points (x, y) on the boundary of the physical 
domain. The distribution of points on the interior is 
then determined by solving 

?XX +& = Q(C> V) (1) 

where. (t,r) represent the coordinates in the com- 
putational domain and P and Q are terms which 
control the point spacing on the interior of the physi- 
cal domain. The effect of changing the functions P 
and Q on the coordinate system is discussed by 
Thompson et al. [6]. One particularly effective pro- 
cedure is to choose P and Q as exponential terms SO 
that the coordinates are generated as the solutions of 
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FIG. 1. Assemblage geometry : (a) side view ; (b) front view 
(after ref. [l]). 

L+5, = - i: aisgn(5-ri)exp(-c,15-5il) 
i= I 

- ,$, 4 w (5 - tj) exp (- d,((5 - t,)’ 

+(V-Vj)')"') 

= P(L?> (24 

- f b;sgn(?-lli)exp(-d;((5-5,)* 
,= I 

(2b) 

The first terms have the effect of attracting the 
< = constant lines to the 5 = & lines in equation (2a), 
and attracting n = constant lines to the q = vi lines in 
equation (2b). The second terms cause 5 = constant 
lines to be attracted to the points (1;,, II,) in equation 

-_I0 0 0 0 01 
(a) 

i Ll 0 ’ 

(b) 

FIG. 2. Multisphere cylindrical cell : (a) side view ; (b) front 
view (after ref. [l]). 

(2a), with a similar effect on n = constant lines in 
equation (2b). 

Elliptic partial differential equations are used to 

generate grids in the present study. All derivatives are 
approximated by second order central differences. The 
set of non-linear difference equations is solved by 
successive line overrelaxation. 

The magnitude of the range of the transformed 

coordinates, r and q, is irrelevant to the subsequent 
use of the coordinate system in the numerical solution 
of partial differential equations, for the mesh widths 
in the transformed plane, At and Aq, simply cancel 
out from all difference expressions for transformed 
derivatives. Therefore, At and Ar] are both taken as 
unity for convenience, with LJ and q each ranging from 

unity to the total number of coordinate lines of each 
description. 

Figure 3 shows the surface-oriented coordinates 

obtained as a solution of the transformation for a 
three-droplet array. A non-uniform distribution of 
points has been obtained in the physical domain, while 
the computational domain is maintained with a 
uniform rectangular grid. 

It should be mentioned that the slab corners in the 
transformed field are special points which require 
special treatment. This type of special point occurs 
when a convex corner in the transformed field is 
associated with a point on a smooth contour in the 
physical field. Both coordinate lines experience slope 
discontinuities at this point (Fig. 4). In the present 
study, a linear distribution of partial derivatives in the 
neighborhood of a special point has been assumed. 
Other techniques for treating the special point can be 
found in ref [6]. 

3. MATHEMATICAL FORMULATION 

The governing equations for the axisymmetric flow 
field and heat transfer in cylindrical coordinates have 
been derived in the previous paper [3] and are sum- 
marized here for completeness 

I 

[ 
a*$ 

WC- 

a*$ I a* 
Y ax ‘+&T-jay 

1 
(3) 
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X 

PHYSICAL PLANE 

COMPUTATIONAL PLANE 

FIG. 3. Mapping to computational space. 

‘\’ 

FIG. 4. Slope discontinuities at special pomt (after ref. 161). 

I Rew at+b d2w ------ f 2y’ z = FxT 

Re Pr ati aT a*ar a2T a*T 1 aT ~ _ _ _ _ .-...- 
3 1 ay ax ax ay_ =p+ayZ+yay (5) 

where the stream function, $, is defined as 

1 alii u=-- 
Y ay 

1 ati uz= ---* 
_V ax 

The boundary conditions are : 

(i) at the inlet, x = 0 

rl, = $3-‘2 

UJ = 0 

T= 1; 

(ii) at the axis of symmetry, y = 0 

l/J=0 

w=o 

$0; 

(iii) at the outlet, x = X 

a+ -0 

XT- 
aw -_=fj 
ax 
aT 
z=o; 

(iv) at the cylinder wall, y = (b/u) (4/n)“’ 

w=o 

aT=,. 
aY ’ 

(8) 

(9) 

w> 

(11) 

(v) at the droplet surface 

i/f=0 

au au 

“=ay-z 

T= 0. (12) 

In boundary condition (v), the vorticity at the drop- 
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let surface is calculated following its definition. The 
velocity components are obtained from differentiating 

the stream function following equations (6) and (7). 
As mentioned in ref. [3], the above formulation is 

valid for the non-vaporizing droplet case. It was found 
by Prakash [7] that the surface velocity is typically 
small and does not affect the heat and mass transfers 
or the vaporization rate in the gas phase. Because of 
that the surface velocity can be neglected in the gas- 
phase analysis. This greatly simplifies the problem by 
eliminating the matching of the surface velocity along 
the droplet surface. The model also assumed that the 
temperature at the droplet surface remains constant 
and uniform. 

The local heat transfer to the droplet can be ex- 
pressed in terms of the local Nusselt number which 
is given by 

Nu =2aT. 0 an (13) 

Subsequently, the overall average heat transfer to 
the whole droplet can be expressed as 

- s Nu = ; 
x 

Nus sin 0 do. (14) 
0 

As for the drag coefficients, the derivations for fric- 
tion drag and pressure drag can be found in Jenson 
[8]. They are given by 

C,r=$ “wsin2f3dB 
s 0 

s I 

G, = PH sin 20 d0 (16) 
0 

where 

,,=P,+&~(;+o$d& (17) 

The governing equations as well as the boundary 
conditions are expressed in finite difference form in 

II lo I: 

5 
FIG. 5. Grid numbering system 

conjunction with the numerical elliptic grid generation 
technique. The details are given in the next section. 

4. FINITE DIFFERENCE FORMULATION 

In order that the computations can be performed 

on a rectangular grid in the computational plane, it is 
convenient to transform the governing equations from 
the physical domain (x, Y) to the computational 
domain (5, n). Using the chain rule of partial differ- 
entiation the partial derivatives become 

(18) 

The matrices (L, ty, v,, vv, L tyy3 L rlJ appear- 
ing in these equations are obtained from the following 
expressions : 

Referring to the notation of the rectangular 5-q 
grid of Fig. 5, the following central difference approxi- 
mations are used : 
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aF F, -F, 
zo=2- 
aF F,--Fe =- 
&a 2 

a2F F,-F,+F,---Fs =- .~ 
am o 4 

a2F 
-T at o 

= F,+F,-2Fo 1 Re Re 
+ 2 yw+ Yj-“yU 

aZF 
( > 

z 
a? 0 

= F,+F,-2Fo. (20) 

(24) 

Here Fis a generalized function representing T, $, o, 
x or y. Substituting equations (I 8)-(20) into equation and equation (5) becomes 
(3), followed by some rearrangement, leads to the 
following equation : EoTo = E,T,+E,T2+E,T,+E.,T4 

G&o = C,$,+C*4+2+C3@3+C‘+3/4 
+E,(T,-T6+T,-Ts) (25) 

~c~(~~-~~+~,-~*~-~o (21) where 

where 

(26) 

> 
In the present study, a hybrid scheme is used. Under 

the hybrid scheme, central difference is utilized when 

/Re,cj < 2 and IReA,/ < 2 forequation (23) 

and 

> 

IPeA, < 2 and IPe,,l < 2 for equation (25) 

where 
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Pe,, = 

Pe,, = 

(27) 

Outside these ranges, the upwind difference is used 
with the diffusion terms (wre, co,,,, Tee, T,,,) set equal 
to zero. The coefficients in equations (23) and (25) 
become 

o,=~S,(A,fA,)+~tl,,(B,+B,)-~+$ 

D, =; 
( 

L+5,+$, 
> 

+ $&- fS,u 

D, = ; 
( 

%~+tl,+$, 
> 

+ $&- !& 

D, = -; 
( 

&+<,,+;<, 
> 

+FtxA,+Fs,o 

D,= -; 
( 

q,,+q,+;q, 
> 

+~rl,B,+~~,u 

D, = f (5,~ + t,rl,) (28) 

and 

E 
Re Pr 

0 = yt,(~, +A~)+ 2tfy(~, +B,) 

E, =; 
( 

Lx+r,+;t, 
> 

+ !?$A,- !%?+ 

4=; 
( 

Re Pr 
‘~xx+vyy+$y +-- 

> 

Re Pr 
2 vpz - -?xU 

& = -; 
( 

Lx+d+;:, 
> 

+ y&A, + y&l; 

& = -; 
( 

L+,,,,+$, 
> 

Re Pr Re Pr 
+--- 2 @I + 4rlxu 

Es = ; (<xv, + 5,rl,) (29) 

where 

AI = [I~~011 

AZ = [I-u,Oll 

B, = tI~,oll 

& = [I-u,Oll. (30) 

Equations (21), (23) and (25) form a set of non- 
linear algebraic equations which can be solved by an 
iteration scheme. A line by line successive under- 
relaxation method is used. 

5. RESULTS AND DISCUSSION 

Numerical solutions have been obtained for a three- 
droplet array. The results obtained from an earlier 
study [3] and those from Tal et al. [l] have been 
used for comparison and are shown in Figs. 68. It is 

c PRESENT STUDY 
A TONG AND CHEN [3] 
+ TAL. LEE AND SIRIGNANO [l] 

ANGLE FROM FRONT STAGNATION POINT 

(DEGREE) 

FIG. 6. Local Nusselt number comparison for the first droplet 
of a three-droplet array: b/a = 1.5, Re = 100, Pr = 1. 
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+ TAL, LEE AND SIRIGNANO [I] 
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i 
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/ 
4s 90 i 35 I so 

ANGLE FROM FRONT STAGNATION POINT 

(DEGREE) 

FIG. 7. Local Nusselt number comparison for the second 
droplet of a three-droplet array: b/a = 1.5, Re = 100, 

Pr= 1. 
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FIG. 8. Local Nusseit number comparison for the third 
droplet of a three-droplet array: b/a = I .5, & = 100, 

Pr= 1. 

interesting to note that in the results af TaI eb al. [I] 
the max~um heat transfer for the first droplet is not 
located at the stagnation point. No discussion about 
the dip in local Nusselt number at the stagnation point 
is given in TaI et al. Ill. On the other hand, the Iocal 
Nusselt number for the first droplet obtained by the 
present authors decreases monotonically from the 
stagnation point region to the shoulder region and 
then becomes negligibly small in the separation 
region. This is also observed in single droplet analyses 
by Renksizbulut and Uuen [93 and by Sayegh and 
Gauvin [lo]. Although discrepancy of Nusselt number 
behavior at the frontal stagnation point exists, the 
contribution of the stagnation point to the overall 
heat transfer is negligible because of the relatively 
limited extent of area involved. For the second and 
third droplet, the front region of the droplet contains 
wakes due to the flow separation from the rear region 
of the droplet upstream. The heat transfer rate in the 
front region of the droplet is severely decreased. 

It should be mentioned that the Nusselt numbers 
for all three droplets obtained by the present authors, 
both in the present study and in the previous work 
[3], are higher than those obtained by Tal ef al. [If. 
In ref. [3]; the rest&s for the no~-va~~~~g singIe 
droplet case show that the hybrid scheme yields better 
agreement with the results from ref. [St], and the 
upwind difference scheme used in ref. [I] yields lower 
values. 

As typical for any iteration scheme, the number of 
iterations for convergence depends on the initial guess. 
In the present study, the result for the Re = 10 case 
is used as the initial guess for the Re = 20 case. The 
iteration process is marching forward with a Reynolds 
number increment of 10 after each convergence. 

The mesh used in the present study (Fig. 3) consists 
of a 91 x 21 grid with three large empty squares 
embedded corresponding to the three droplets. The 
following relaxation factors are used in the cal- 

9 Ilo’ 2 3 4 5 6 7 8 9 ‘)(j 2 

REYNOLDS NUMBER 

FIG. 9. Overall droplet Nusselt number for a non-vaporizing 
three-droplet array : b/a = 1.5, Pr = 1. 

~3 FIRST DROPLET 
A SEtXX%JaRoptEf 
* THIRD DROPLET 

D 

. 

REYNOLDS NUMBER 

FIG. IO. Total drag coefficient for a non-vaporizing three- 
droplet array : b/a = 1.5, Pr = I. 

culations: 0.35 for cv; 0.9 for both 3, and T. It con- 
sumes about 7.5 min of CPU time on an IBM-4341 
system to reach the solution for Re = IO0 by the 
marching scheme mentioned above with less than 
0.1% convergence error. The corresponding CPU 
time consumed in the previous study f3f is about 20 
min. The amount of CPU time for the grid generation 
is about I. 5 min. 

The results for the overall Nusselt number and total 
drag coefficient as a function of Reynolds number are 
shown in Figs. 9 and 10, respectively. The values of 
the drag coefficient as well as Nusselt number for the 
first droplet are distinctively higher than the values 
for the two downstream droplets. This result is in 
compliance with the study of Tal et al. [I]. The figures 
show that the results for the second droplet resemble 
the results for the third droplet. This suggests that 
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periodic behavior can be expected after the first drop- 

let. 

Attempts have been made to search for exper- 

imental results which can be used for comparison 

with the numerical results. Unfortunately, due to the 
geometry constraints used in the present work, no 
experimental results have been found in the existing 
literature which are useful for comparison. 

6. SUMMARY 

The use of a grid generation technique for the 

numerical solution of heat transfer and hydro- 

dynamics in a three-droplet array has been developed. 
The Navier-Stokes equation in vorticity-stream- 
function form and the energy equation have been 
solved. Numerical solutions have been obtained for 
the Reynolds number range of 10-200. The results are 
compared with the results obtained in an earlier study 
as well as those in the literature. The body-fitted coor- 
dinates presented in this study require less computer 
time than the earlier study [3] and are more suitable 
for treating the more general problem of droplet heat- 
ing and vaporization. Due to the geometry concerned 
in the present study, no experimental result can be 
found in the existing literature for comparison. 
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APPLICATION DE LA TECHNIQUE DE GENERATION DE GRILLE ELLIPTIQUE A 
LA RESOLUTION DE L’HYDRODYNAMIQUE ET DU TRANSFERT THERMIQUE 

POUR DES GOUTTELETTES A DES NOMBRES DE REYNOLDS INTERMEDIAIRES 

R&sum&On emploie la technique de generation dune grille numirique a la resolution de l’hydrodynamique 
et du transfert thermique dans un arrangement a trois gouttalettes. Des equations aux dtrivees partielles 
elliptiques sont utilistes pour obtenir des grilles dans le plan physique. Les equations de Navier-Stokes 
dans la forme vorticite-fonction de courant et l’equation d’energie sont rirsolues numeriquement par la 
methode des differences finies pour des nombres de Reynolds variant entre 10 et 200. Des solutions 
numtriques sont obtenues en terme de coefficient de trainee et de nombre de Nusselt. Les rtsultats sont 

compares a ceux obtenus dans une etude anttrieure et a d’autres tires de la bibliographie. 

DIE ANWENDUNG EINER ELLIPTISCHEN NETZGENERIERUNGSTECHNIK AUF 
DIE UNTERSUCHUNG VON HYDRODYNAMIK UND WARMEUBERTRAGUNG 

VON TROPFENSCHWARMEN BE1 MASSIGEN REYNOLDS-ZAHLEN 

Zusammenfassung-Das Ziel der vorliegenden Arbeit ist es, eine numerische Netzgenerierungstechnik zur 
Untersuchung von Hydrodynamik und Wirmeiibertragung eines Drei-Tropfen-Schwarms anzuwenden. 
Elliptische partielle Differentialgleichungen werden benutzt, urn die Netze in der physikalischen Ebene 
zu generieren. Die Navier-Stokes-Gleichungen in der Form Wirbeltransport-Stromfunktion und die 
Energiegleichungen wurden mit einem Finite-Differenzen-Verfahren fib Reynolds-Zahlen von 10 bis 200 
gel&t. Numerische Losungen wurden in Form von Reibungskoeffizienten und Nusselt-Zahlen ermittelt. 

Die Ergebnisse wurden mit solchen aus friiheren Untersuchungen und mit Literaturwerten verglichen. 
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I-IPklMEHEHkiE METOW l-EHEPkiPOBAHkiR 3JIJIAllTki9ECKHX CETOK &WI PEIIIEHMII 
3ALIA’4 l-MJIPOlWiHAMkiKM ki TEl-IJIOIIEPEHOCA B KAl-IEJIbHbIX @AKEJIAX l-IPM 

‘i-ItiMEXYTO’-IHbIX 3HA9EHMIIX WICJIA PERHOJIbACA 

Amwawm-UenbIo HacTonuero HccnenonaHHn Knnnnocb npHbteHeHHe MeTona wcneHHoi4 ~~T~YHoZ~ 

reHepa4ninnn perueHHn3anaY~onHHaMAKH ~Ten~006MeHa e~aKeneKanenb~pEx~~~~~~.Mcnonb- 

3yloTCK 3JLlIHllTH'ieCKSie ~IjM&~HI@iaJIbHble ypaBHeHHff 6 SaCTHbIX IlpOH3BOAHbIX AJM reHep&ipOBaHHJl 

wrori B &i3HqeC~oii ~~CKOCTH. Ypamemfn HaBbe-cTOKCa, 3anHcaHHbIe B @opbte 3aeHxpeHHocTH H 

t$yHKm~ TOK~ H ypasHeme 3HeprHH peruanncb qHcneHH0 M~TOLIOM KoHeqHbD( pa3HocTefi arm wana- 

30Ha 9HCJIa PefiHOnbJWa OT 10 LIO 200. %iCneHHbte peJUeHHK IIOJl~eHbl B Bly(e K03+$HUHeHTa COOpO- 

THBneHHR W qHCna HyCWIbTa. Pe3ynbTaTbI CpaBHHBalOTCK C XaIiHbIMH, IfOnyYeHHbIMIi B paHee 


